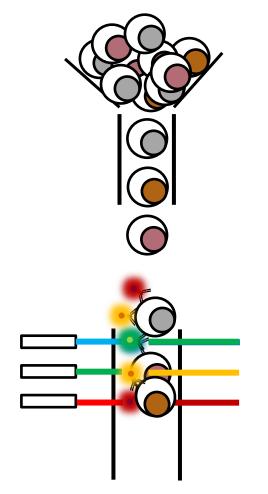
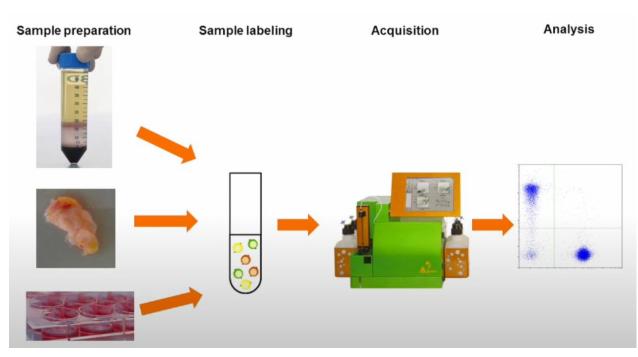


What is wrong with my flow cytometry data?

Hints, tricks and pitfalls

Webinar 5 06.06.2023




The alpha and omega of preparing cells for flow cytometry

What we need to talk about

- 1. Single cells
- 2. Preparation: blood, cells, tissues
- 3. Mechanical vs. enzymatic disintegration of tissues or cell layers
- 4. Doublets and dead cell exclusion
- 5. Fixation
- 6. Surface staining
- 7. Intracellular staining

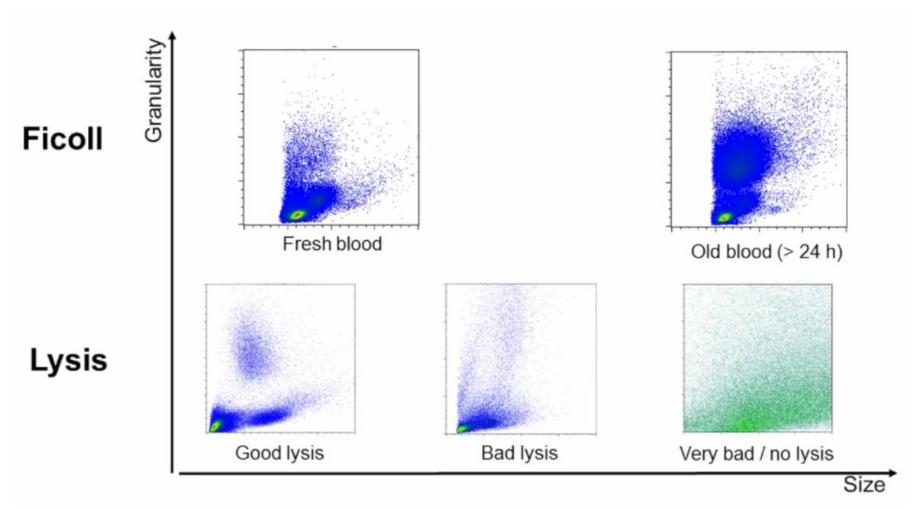
All about single cells...

https://www.youtube.com/watch?v=mpOIRpIZhPg

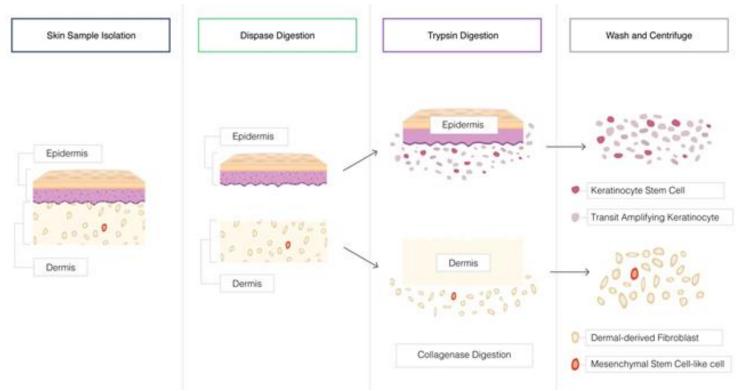
Viability and yield max!

The A and O of sample preparation

better sample preparation leads to better results
 and easy data analysis

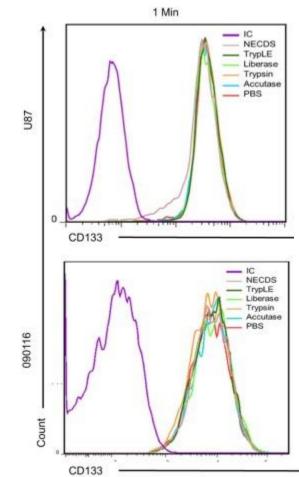


https://www.youtube.com/watch?v=mpOIRpIZhPg


- standard procedure:
- sampling: blood, tissues, freeze/thaw, cell harvest
- → single cell suspension
- wash with cell stain buffer (1X PBS + 1-2% BSA + 2-5 mM EDTA + 2mM NaN₃)
- stain and measure
- changing BSA and/or EDTA conc. might reduce doublets

Sample prep: **Blood**

https://www.youtube.com/watch?v=mpOIRpIZhPg

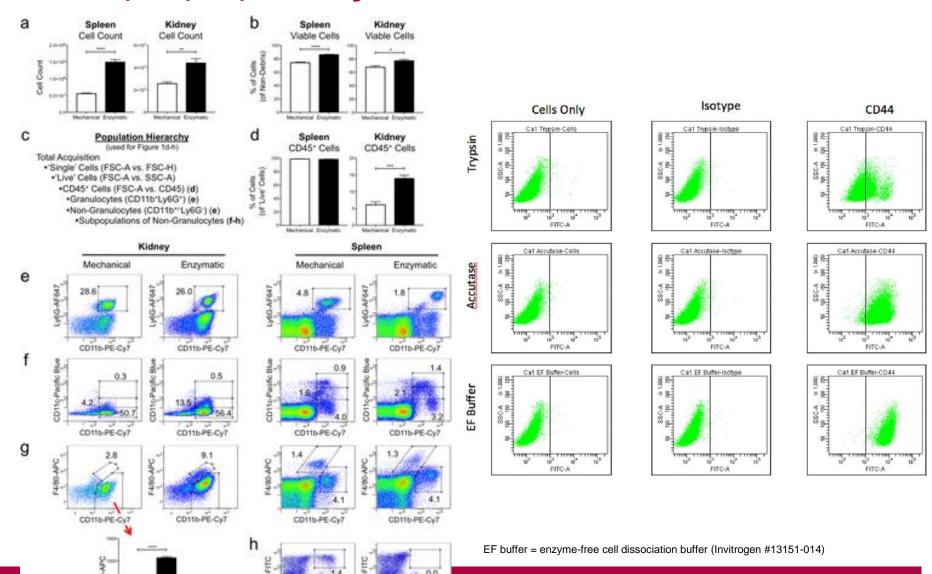

Sample prep: Tissues

https://www.flowmetric.com/cytometry-blog/sample-preparation-for-flow-cytometry

- complex enzymatic digestion needed
- combination of enzymatic and mechanical protocols, include DNase
- goal: single cells with > 50% vitality and intact epitopes

Sample prep: Enzymatic digestion

NECDS (non-enzymatic cell dissociation solution): detachment of primary cells, EDTA based


TrypLE (Gibco): animal origin-free, recombinant enzymes for dissociating adherent mammalian cells → substitutes trypsin, superior performances

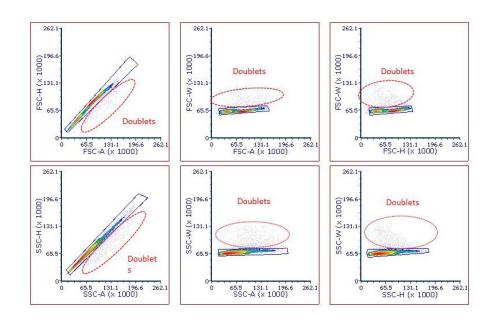
Liberase (Merck): Kollagenase I / II + Thermolysin (Protease)

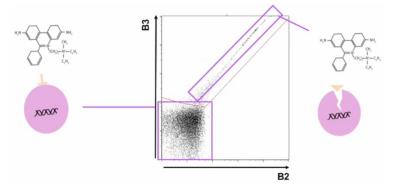
Accutase: animal origin-free, proteolytisch und kollagenolytisch

Human primary glioblastom cells

Sample prep: Enzyme vs. scissors

CSF-1R-PE

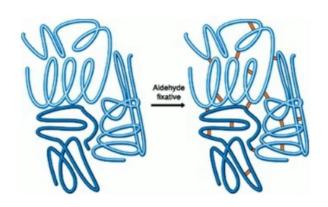

Sample prep: dead/ doublet cell ex


Doublet cells

- wrong buffer composition
- clumps do clog the cytometer
- doublets cause false-positive signals
- → resuspend, filter (30-70 nm), vortex

Dead cells

- density gradient:
- high cell loss (≤ 50%)
- toxic
- increase of autofluorescence
- → DNase treatment

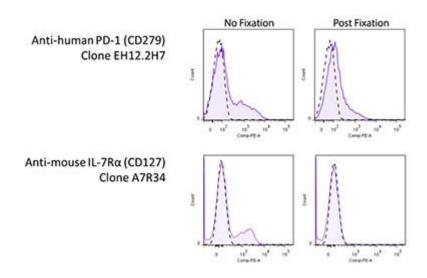


Sample prep: Fixation

- fixation <u>BEFORE</u> staining epitope alteration
- fixation <u>AFTER</u> staining fluorophore instability
 - GFP, cyanine- and protein based fluorophors: signal loss after fixation (APC-Cy7< APC-H7, PerCP, FITC, etc)
 - but some phospho-epitopes needs methanol demasking

Fixation

- Formaldehyde
 - Create bonds between lysine residues to cross link proteins
 - Used between 0.5% and 4%
 - Stable for 1-2 weeks but should be kept in PBS after initial fixation


https://www.youtube.com/watch?v=oeqiCa3nEwc

Sample prep: Surface staining

- coaggulant (e.g. EDTA, Heparin) interfere with some epitopes
- check enzyme activity and whether targets are "nibbled off"
- Ficoll and RBC Lysis buffer also interfere with surface epitopes
- blocking of Fc receptors when working with PBMCs or any other cell types expressing FcR
- → exception: Fc-staining on monocytes, Ig-staining on B cells
- in case of fixation: check tandem fixability
- stimulation reduces or increases expression? →PMA/Iono causes internalization
- no azide in functional assays → ROS detection, Ca²⁺-flux, ...

Sample prep: Intracellular staining

- also block intracellularly
- dilute antibodies in saponin-based buffer (reversible)
- use bright fluorophors since expression is often weak
- use (FMO) controls

- wash the cells adequately after each antibody incubation step (unbound antibodies are trapped in the cells in the case of intracellular staining)
- perform all protocol steps at 4°C
- permeabilize on ice

https://www.biolegend.com/en-us/blog/fix-now-fix-later-considerations-for-the-use-of-paraformaldehyde-fixation-in-flow-cytometry

Sample prep: Take home message

- the better the preparation and protocol of your samples the better your results/analysis is
- coaggulants, Ficoll, lysis buffer, enzymes, fixation buffer interfere with epitope access and reduce signal of flurophors
- in multi-colour panels optimization towards high signal, low doublet rate, high viability is the goal!

Thank you for your attention.

See you next month: 4th July

Next topic

When to use which buffer system

Enzymes for tissue dissociation

Enzyme	Туре	Source	Target	
Trypsin	serine protease	bovine/porcine pancreas	predominantly at c-terminal side of AA Lys or Arg	relatively harsh
Papain	cysteine protease	Carica papaya	cleaves basic AAs	relatively harsh, but less digestive than Trypsin
Collagenase	protease, includes also phospholipases or neuraminidases	Clostridium histolyticum	peptide bonds in collagen; Different types available, depending on supplier Roche: A, B, D, H, P Sigma-Aldrich: I-IV, Worthington: Type 1-4	different collagenase types with different levels of unspecific activities
Liberase Blendzymes	blend of purified collagenases with neutral proteases	Clostridium histolyticum and Bacillus polymyxa or B. thermoproteolyticus	Supplied by Roche, more defined activity and composition	developed for pancreatic islet transplantation research
Dispase	protease	Bacillus polymyxa	fibronectin, collagen IV (collagen I)	separation of dermis and epidermis
DNase	nuclease DNase I: neutral DNase II; functions optimally at acidic pH	bovine pancreas	DNA	avoid cell clumping

https://www.youtube.com/watch?v=mpOIRpIZhPg