

What is wrong with my flow cytometry data?

Hints, tricks and pitfalls

Webinar 3 04.04.2023

Cell cycle analysis – simple but complicated?

Cell cycle analysis – simple but complicated?

- simple:
 - use of intercalating DNA-Dyes
 - only one colour needed → can be done on nearly any flow cytometer
 - one of first applications of flow cytometry in history

- complicated:
 - many different protocols available
 - small differences in treatment can have big effects
 - RNA, doublets and clumps disturb cell cycle analysis

principle and general steps

- 1. Fix cells that have been harvested and washed in PBS in 70% v/v ethanol. Adding the ethanol dropwise to the cell pellet while vortexing will ensure that all cells are fixed and will minimize clumping.
- 2. Fix cells for 30 min at 4°C, after which wash cells twice in PBS (850 \times g). Be careful to avoid cell loss when discarding the supernatants.
- 3. Treat cells with RNAse (50 μL, 100 μg/mL) in order to ensure that only DNA is stained.
- 4. Add PI (200 μL PI, 50 μg/mL stock solution) immediately before analyzing

Example of cell cycle arrest

Cell cycle analysis – What had happened here?

too many dead cells, low number of living cell

PMTV for scatter and dye not set properly

no doublet exclusion

What to consider?

- Many DNA Dyes available:
 - PI, Hoechst stains, TO-PRO-3, SYTOX, acridine orange, pyronin Y, 7-AAD, DAPI, DRAQ5™, and DRAQ7™
 - bind RNA (PI), others less (7-AAD, DAPI), staining of living cells (DRAQ Dyes)
- PFA-fixation reduces resolution, because of chromatin crosslinking
- Always count cells before DNA staining → DNA-dye cell ratio should be stable

What to consider?

- exclude doublets
- if possible exclude dead cells Therefore, disproportions between H, W & A can be used to identify doublets, the for any (scatter or better fixable live-dead-stain)
- lower flow rate results in more accurate aguisition \rightarrow sharp peaks
- measure & analyze with linear scaling
- record 10.000 20.000 cells
- adjust G1 peak to a definite value, e.g. 200, and check for the G2/M to appear at the doubled value, e.g. 400 (doubling of DNA content)

experimental improvements

- adjust concentration of treatment
 - (too many apoptotic cells)
- include live-dead-staining
- include untreated control (always same confluency)
- maybe starve and synchronize cells before assays start

experimental improvements

- For this purpose specialized programs have been designed such as:
 - ModFit LT™ from Verity Software House (http://www.vsh.com/products/mflt/mfFeature s.asp)
 - Multicycle AV™ from Phoenix Flow Systems (http://www.phnxflow.com/MultiCycle.stand.al one.html)

European Journal of Immunology, Volume: 49, Issue: 10, Pages: 1457-1973, First published: 21 October 2019, DOI: (10.1002/eji.201970107) https://docs.flowjo.com/flowjo/experiment-based-platforms/cell-cycle-univariate/

cell cycle analysis -TAKE HOME MESSAGE

- improve data quality:
 - dye selection and protocol optimization
 - doublet exclusion and low flow rate
 - because of linear scale small differences have big effect
 - stable cell number and dye concentration needed
- FlowJo provides easy analysis tool
 - needs clear G1-peak
 - good untreated control necessary

,easy' cell cycle analysis can be more complicated than thought

Thank you for your attention.

See you next month 2th Mai.

Next topic:

Aggravating compensation – discover errors and correct them