

What is wrong with my flow cytometry data?

Hints, tricks and pitfalls

Core Facility for Cell Sorting and Cell Analysis

Universitätsmedizin Rostock

(The) perfect control(s) - how and what to use?

The need for controls ... an example.

Threshold

Value:

52

52

52

52 #

52 #

52

Primary

Param:

FSC-H

SSC-H

FL1-H

FL2-H

FL3-H

Secondary

SSC-H

FL1-H

FL2-H

FL3-H

FL4-H

None

Param:

unstained?

stained?

No! both unstained

iversitätsmedizin	
stock	

Secondary

SSC-H

FL1-H

FL2-H

FL3-H

FL4-H

None

Param:

SSC-H

FL1-H

FL3-H

Controls: Determining positivity by eliminating false positives

- flow cytometry \rightarrow multiparametric analysis of single cell suspension
- BUT: relative measurement → results depend on experimental setup, device configuration and settings (e.g. PMT voltages)
- Spectral spillover \rightarrow compensation & unmixing \rightarrow single staining are needed
- wrong controls \rightarrow wrong data and misinterpretation

The nature of controls

Universitätsmedizin Rostock

Control types: UNSTAINED

- defines background and autofluorescence
- should be within the first third of the plot/graph
- can be used as a cu off for positive staining
- helpful to find cells in the scatter plots

Universitätsmedizin Rostock

Control types: SINGLE STAIN

which control is needed?

- positive control for each fluorescence dye
- necessary for calculating compensation/unmixing
- minimum as bright as the real sample
- background/autofluorescence of negative and positive control must be the same
- ! compare beads with beads, cells with cells !

Control types: **ISOTYPE**

- check for unspecific antibody binding (ionic and hydrophobic interactions between Fcreceptors and antibody)
- need for identical isotype & fluorophore
- e.g. mouse IgG2a (κ) PE-Cy7 or mouse IgG2b (κ) PE-Vio770

Fig. 21. Fc blocking. THP-1 cells stained with mouse anti human CD11a (blue) or mouse IgG2a isotype control (MCA929F) (red) in the absence (A) and presence (B) of human Seroblock (BUF070A)

CD11a FITC

CD11a FITC

How to get away with an unspecific staining

- particularly B cells and myeloid cells: monocytes, dendritic cells, macrophages
- positive signal with isotype ctrl \rightarrow blocking!
 - commercial Fc block (BioLegend, BD, ...)
 - based on CD16/32
 - for human and mouse
 - self-made: 10% serum in PBS (+ 0,5 % BSA)
 - reducing unspecific binding of tandem conjugates to Fc receptors
 - Monocyte blocker or Tandem Enhancer

How to get away with an unspecific staining

Universitätsmedizin Rostock

Control types: Fluorescence minus one

- · control staining without antibody of concern, all others stained
- defines measure of spread of other fluorophors
- gate for positive population
- often necessary for <u>tertiary antigens</u>

Spreading error

Control types: Fluorescence minus one

Unstained

Fluorophore	VB FMO	FITC FMO	PE FMO	APC FMO
VioBlue		+	+	+
FITC	+	-	+	+
PE	+	+		+
APC	+	+	.+	

Universitätsmedizin Rostock

12

Control types: Experimental

- depends on experiment
 - cell lines negative for markers
 - WT vs KO
- healthy vs. disease
- activated vs. non-activated (scatter properties!)
- control sample to rule out batch effects

Perfect control: Take home message

- for setup: unstained and single stained controls
- single stainings as bright or better brighter as the real sample
- pos./neg. population: beads go with beads, cells go with cells
- always ask: what additional controls do I need?
 - isotype \rightarrow unspecific binding \rightarrow blocking agents
 - FMO \rightarrow gating and analysis control
 - experimental \rightarrow healthy, unstimulated, batch control
- antibody producer often provides hints for QC/positive controls
- especially for spectral flow cytometry:
 - use the same treatments/buffers/fixative for controls and samples
- no staining \rightarrow search for positive cell line or stimulation

Thank you for your attention.

See you next month 4th April.

Next topic: Cell cycle analysis – it's considered to be simple!